Bean's Studio

泊松过程

2018/10/26
loading

Wiki的定义

Poisson过程(Poisson process,大陆译泊松过程、普阿松过程等,台译卜瓦松過程、布瓦松過程、布阿松過程、波以松過程、卜氏過程等),是以法国数学家泊松(1781 - 1840)的名字命名的。泊松过程是随机过程的一种,是以事件的发生时间来定义的。我们说一个 随机过程 N(t) 是一个时间齐次的一维泊松过程,如果它满足以下条件:

  • 在两个互斥(不重叠)的区间内所发生的事件的数目是互相独立的随机变量。
  • 在区间\(\left[t,t+\tau\right]\)内发生的事件的数目的概率分布为:\(P\left[(N(t+\tau)-N(t)=k\right]= \frac{e^{-\lambda\tau}\times{(\lambda\tau)^k}}{k!} \qquad k=1,2,\cdots\)

其中λ是一个正数,是固定的参数,通常称为抵达率(arrival rate)或强度(intensity)。所以,如果给定在时间区间 \(\left[t,t+\tau\right]\) 之中事件发生的数目则随机变量 \(N(t+\tau)-N(t)\) 呈现泊松分布,其参数为 \(\lambda\tau\)

更一般地来说,一个泊松过程是在每个有界的时间区间或在某个空间(例如:一个欧几里得平面或三维的欧几里得空间)中的每一个有界的区域,赋予一个随机的事件数,使得:

  • 在一个时间区间或空间区域内的事件数,和另一个互斥(不重叠)的时间区间或空间区域内的事件数,这两个随机变量是独立的。
  • 在每一个时间区间或空间区域内的事件数是一个随机变量,遵循泊松分布。(技术上而言,更精确地来说,每一个具有有限测度的集合,都被赋予一个泊松分布的随机变量。)

泊松过程是莱维过程(Lévy process)中最有名的过程之一。时间齐次的泊松过程也是时间齐次的连续时间Markov过程的例子。一个时间齐次、一维的泊松过程是一个纯出生过程,是一个出生-死亡过程的最简单例子。

性质

考虑一个泊松过程,我们将第一个事件到达的时间记为T1。此外,对于n>1,以Tn记在第n-1个事件与第n个事件之间用去的时间。序列{Tn,n=1,2,...}称为到达间隔时间列。

  • Tn(n=1,2,...)是独立同分布的指数随机变量,具有均值1/λ。

注意

到达率也译作强度

例题

强度为 λ 的泊松过程的点间间距是相互独立的随机变量,且服从均值为( )同一指数分布

答案: \(1/ λ\)

解析

如上定义

CATALOG
  1. 1. Wiki的定义
  2. 2. 性质
  3. 3. 注意
  4. 4. 例题
  5. 5. 解析